Synchronous Kleene Algebra vs. Concurrent Kleene
Algebra

Cristian Prisacariu

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail:cristi @fi.uio.no

Abstract. Inthisyear's CONCUR conference Concurrent Kleene AlgéGieA)

is presented as a general formalism for reasoning aboutuo@mt programs.
Also recentlySynchronous Kleene Algeb(&/.A) was investigated by this au-
thor with the purpose of representing and reasoning abdigtnaéprograms that
have a notion of concurrency in the style of synchrony of tfCS calculus.
CKA has, at first sight, striking resemblances wiit.4. We discuss this model
of concurrency in relation witts/C.A. Our discussion focuses on the underly-
ing ideas and intuitions of the two models. The discussiaiss casted into the
partial orders model of concurrency to get more insights the two algebras.

1 Introduction

Kleene algebregormalizes axiomatically the structures of regular expi@ss and fi-
nite automata (see e.g. [1, 4]). Kleene algebra with te§tsdtbines Kleene algebra
with a Boolean algebra and can encode the propositionaléHogic, therefore it can
model while programs. In one form or another, Kleene algebppear in various for-
malisms in computer science: relation algebras, logicsrofjfams and in particular
propositional dynamic logic, regular expressions and fdidanguage theory.

Synchronys a model for concurrency which was introduced in the preedgebra
community in Milner's SCCS [6], but detaches form the gehiatarleaving approach.
On the other hand it is a concept which does not belong to th&aparder model of
concurrency either. The synchrony concept proves hightyessive and robust; SCCS
can represent CCS (i.e. asynchrony) as a sub-calculus, gmanumber of synchro-
nizing operations can be defined in terms of the basic SCCtups.

The notion ofsynchronyhas different meanings in different areas of computer sci-
ence. Here we take the distinction between synchrony andchsyny as presented
in the SCCS calculus and implemented in e.g. the Esterehsgnous programming
language. We understaadynchronyas when two concurrent systems execute at inde-
terminate relative speeds (i.e. their actions may haverdifft noncorelated durations);
whereas in thesynchronymodel each of the two concurrent systems execute instanta-
neously a single action at each time step. The reasoning/eriged by the assumption
of a global clock and an assumption of eagerness (i.e. at tiaehstep all possible
concurrent actions are performed). The SCCS concurrenesatiy x over processes
is different from the classicd| of CCS.

L A preliminary version ofSK.A was presented in [9] with details available in [8].

2 Cristian Prisacariu

2 Discussions

Synchronous Kleene algebra combines synchrony and Kldgebra.SKA is ao-
algebra with signature = {+,-,x,*,0, 1, Ag}. The non-constant functions efare:
“+" for choiceof two actions, *” for sequencef two actions (or concatenation)™

for synchronous compositioof two actions, and*” to modelrepeated executioof
one action. The axioms & A are those of Kleene algebra together with eight more
for the synchrony operatosrmaking it commutative, associative, with identity element
1, zero elemen®, and distributive ove#- in both arguments. Two more special axioms
are the idempotence over thasic action®f A and the synchrony axiom:

(ax- @) x (Bc- B) = (axx Bx) - (ax B) Vo, B € Ap 1)

Recently Concurrent Kleene algebra (CKA) was proposed]if {3KA is defined
as two quantaless, +, ;, 0, 1) and(S, +, , 0, 1) related by an exchange axichQuan-
tales are idempotent semirings which are also completedattinder the natural order
< of the semiring (i.e. have the extra constraint of a top el@jn&he natural order is
definedasy < 8 = o+ 8 = 6. Similarly, SX.A forms also two idempotent semirings;
and bothSK.A and CKA have< and+x commutative. What differentiates the two is the
synchrony axiom on the one hand and the exchange axiom orilthe and as we see
later, also the choice of models.

Both algebras can model Hoare-style reasoning about ségugmgrams. On top,
both algebras can reason about some form of concurrentgmsgrCKA can model
Jone’s rely/guarantee calculus, wheré&dSA can reason in the style of Qwicki and
Gries (i.e., shared-variables concurrency and interfarpabout synchronous programs.

CKA theory relies heavily on the natural ord€r the exchange axiom is defined in
terms of it. Generally, an intuitive understanding of théunal order of a semiring is
that < states that the left operand has less behavior than theajggiand, or in other
words, the right operand specifies behavior which includiethe behavior specified
by the left operand (and possibly more). The exchange axigsile two properties of
CKA relevant for our discussion:

(axB); (o« f) < (az0') = (8; 3') (2)
af<axp 3)

Equation (2) is similar to the synchrony axiom. It is moregehbecause it considess
andg general actions and not only synchronous actionsdikes, € A%, (i.e. the basic
actions closed only unde}. On the other hand it is less informative than the synchrony
axiom because it only states inclusion of behaviors and qualdy. One may read (2)
as: “All behaviors coming from putting two concurrent corsfions in sequence are
captured by putting the respective sequences in concuroemposition.”

Equation (3) does not hold i§/K.A and has no similar counterpart eitherdit.A
sequence composition and synchronous composition of twgplkex actions have dif-
ferent behaviors. Equation (3) states that the concurm@miposition captures all the

2 See the related technical reportshatt p: / / www. i nf or mat i k. uni - augsbur g. de/
de/ f or schung/ reports/
8. andx correspond to respectivelyandx in SKA.

Synchronous Kleene Algebra vs. Concurrent Kleene Algebra 3

behavior of the sequential composition. This is the same #se “concurrency as in-
terleaving” approach where all the behaviors coming frdrthal possible interleavings
are contained in the concurrent composition. In CKA one hisliecause of the com-
mutativity of x (a; 6 + B; a0 < a x 3).

The closest relation to interleaving th&t’.A can make is with thehuffleoperator
from regular languages which has a position between thdeéatgng approach and the
partial orders approach to concurrency. If we were to igtioeebranching information
in our actions then we can viewas anordered shuffleThe shuffling of two sequences
of actions inSKC.A walks step by step (on theperation) and shuffles the basic actions
found (locally).

Now we take a look at the models of the two algebraic formadismd also relate
them with the partial orders model.

For CKA the models are given as element§XfP(F)) whereF is a set of events
equipped with a dependency relatien (no transitivity or acyclicity requirements as
with partial orders). A model is a set of traces, where a tisgest a set of events. For
SK A thestandard interpretatiorof the actions is given by defining a homomorphism
Isx.4 Which takes any action &4 into a correspondingegular set of synchronous
strings(i.e. a subset of strings frof(Az)*).

Synchronous strings, as related to the traces of CKA, alge halependency re-
lation which is a restricted partial order. We now isolataibcdass of pomsets which
define exactly this partial order. Later we come back to CKA aur discussion.

The theory of pomsets [7] is among the first in concurrencpté make a dis-
tinction between events and actionsA. A pomset is a partially ordered set of events
labeled non-injective by actions. Pomsets extend the iflefxings, which are linearly
ordered multisets, to partially ordered multisets. Foftynalpomseis the isomorphism
class (w.r.t. the events) of the structyie, A, <, u) wherep : E — A labels events by
action names. Two events that are incomparable by the pantier < are permitted to
occur concurrently. A pomset describes only one executidgheoconcurrent systefh.
Pomsets are more expressive then our synchronous strings.

Theorem 1. Synchronous strings are completely characterized by sgnos pom-
sets. A synchronous pomset is a pomset where the partial @sigects the constraint:

all maximal independent seése disjoint,uniquely labeledandcompletely ordered

where anindependent set of evenis X C E s.t.Ve;,e; € X then(e; £ €;) A
(ej £ e;). An independent set imiquely labeledff the labeling function is injective
on X; i.e. u|x is injective. Two independent seX§, X; are completely orderedf if
Jde; € X;, Je; € X; withe; < ej thenVe; € X;, Ve; € X is the case that; < e;.

We can find operations on synchronous pomsets correspotuithgSKA’s +, -,
and*. For thex of SK.A we did not find a straightforward equivalent for synchronous
pomsets. Moreover, we are not sure if there aset definableperation (as in ter-
minology of [2]). The first candidate was the concurrencyrapien ||, but this breaks
thecompletely orderedequirement.

4 The same as a trace in CKA and a synchronous stridtfim.

4 Cristian Prisacariu

The pomset concurrency operatifirbehaves like the: of CKA, meaning that|
combines two pomsets with disjoint events by making the moiothe events and the
union of the partial orders (no new dependencies are ad8exijarly, in CKA one can
view two traces as having their own dependency relatior{asstricted to each trace)
andx makes union of their events with no restriction on the depeny relations.

In CKA the dependency relation is not manipulated, it is givEKA processes
specify subsets of events, and each subset has attachecktiediped— restricted to
its events only. ISK.A and pomsets the partial order is changed with each aplicati
of an operator; e.g., sequential composition adds depeieteThe approach of CKA
is similar to that of separation logic where one reasons Bhdig (given) program
by separating it into smaller independent programs. On therdiand the partial or-
ders model has a constructivist view where big programs@mstoucted from smaller
programs (i.e. the partial order is constructed).

The sequential composition of two traces in CKA returns thomo of the events
only if there is no dependency from the events of the left apétto events of the right
operand. In the constructivist view of pomsets &1id.A two pomsets are composed
sequentially by adding a dependence between any event ngtiteperand and all the
events of the left operand. This implies the same consteaii@KA imposes. IIEL.A
we achieve the separation of the dependencies by constnyethereas in CKA it is
achieved by choosing the separation depending on the pnedefi relation.

Concluding, we remind that the purpose of our discussiorstoget a better un-
derstanding of the underlying intuitions behind CKA in t&a to the ideas behind
SK.A and pomsets. As a last remark, it would have been interesdiatso cast CKA
into pomsets because we would thus have a common formal drf@urcomparison.
But this is not immediate because the dependency relatitmredEKA model does not
have the constraints of a partial order (i.e. is more geheral

References

=

. J. H. ConwayRegular Algebra and Finite Machine€hapman and Hall, 1971.
. J. L. Gischer.Partial Orders and the Axiomatic Theory of ShufffehD thesis, CS, Stanford
University, 1984.

3. T.Hoare, B. Moller, G. Struth, and I. Wehrman. Concuri€eene Algebra. 1r20th Interna-
tional Conference on Concurrency Theory (CONCUR/QNCS. Springer, 2009.

4. D. Kozen. A completeness theorem for kleene algebrastendlgebra of regular events.
Information and Computatiqri10(2):366—390, 1994.

5. D. Kozen. Kleene Algebra with Test8CM TOPLAS'9719(3):427-443, 1997.

6. R. Milner. Calculi for synchrony and asynchroMCS 25:267-310, 1983.

7. V. R. Pratt. Modeling Concurrency with Partial Ordedsiternational Journal of Parallel
Programming 15(1):33-71, 1986.

8. C. Prisacariu. Extending Kleene Algebra with Synchrofgchnical Report 376, Univ. Oslo,
October 2008.

9. C. Prisacariu. Extending Kleene Algebra with Synchr@@gmpleteness and Decidability. In

T. Uustalu and J. Vain, editorgpth Nordic Workshop on Programming Theo2(p08.

N

