
Synchronous Kleene Algebra vs. Concurrent Kleene
Algebra

Cristian Prisacariu

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

E-mail:cristi@ifi.uio.no

Abstract. In this year’s CONCUR conference Concurrent Kleene Algebra(CKA)
is presented as a general formalism for reasoning about concurrent programs.
Also recentlySynchronous Kleene Algebra(SKA) was investigated by this au-
thor with the purpose of representing and reasoning about actions/programs that
have a notion of concurrency in the style of synchrony of the SCCS calculus.1

CKA has, at first sight, striking resemblances withSKA. We discuss this model
of concurrency in relation withSKA. Our discussion focuses on the underly-
ing ideas and intuitions of the two models. The discussion isalso casted into the
partial orders model of concurrency to get more insights into the two algebras.

1 Introduction

Kleene algebraformalizes axiomatically the structures of regular expressions and fi-
nite automata (see e.g. [1, 4]). Kleene algebra with tests [5] combines Kleene algebra
with a Boolean algebra and can encode the propositional Hoare logic, therefore it can
model while programs. In one form or another, Kleene algebras appear in various for-
malisms in computer science: relation algebras, logics of programs and in particular
propositional dynamic logic, regular expressions and formal language theory.

Synchronyis a model for concurrency which was introduced in the process algebra
community in Milner’s SCCS [6], but detaches form the general interleaving approach.
On the other hand it is a concept which does not belong to the partial order model of
concurrency either. The synchrony concept proves highly expressive and robust; SCCS
can represent CCS (i.e. asynchrony) as a sub-calculus, and agreat number of synchro-
nizing operations can be defined in terms of the basic SCCS operators.

The notion ofsynchronyhas different meanings in different areas of computer sci-
ence. Here we take the distinction between synchrony and asynchrony as presented
in the SCCS calculus and implemented in e.g. the Esterel synchronous programming
language. We understandasynchronyas when two concurrent systems execute at inde-
terminate relative speeds (i.e. their actions may have different noncorelated durations);
whereas in thesynchronymodel each of the two concurrent systems execute instanta-
neously a single action at each time step. The reasoning is governed by the assumption
of a global clock and an assumption of eagerness (i.e. at eachtime step all possible
concurrent actions are performed). The SCCS concurrency operator× over processes
is different from the classical‖ of CCS.

1 A preliminary version ofSKA was presented in [9] with details available in [8].

2 Cristian Prisacariu

2 Discussions

Synchronous Kleene algebra combines synchrony and Kleene algebra.SKA is a σ-
algebra with signatureσ = {+, ·,×,∗ ,0,1,AB}. The non-constant functions ofσ are:
“+” for choiceof two actions, “·” for sequenceof two actions (or concatenation), “×”
for synchronous compositionof two actions, and “∗” to model repeated executionof
one action. The axioms ofSKA are those of Kleene algebra together with eight more
for the synchrony operator×making it commutative, associative, with identity element
1, zero element0, and distributive over+ in both arguments. Two more special axioms
are the idempotence over thebasic actionsof AB and the synchrony axiom:

(α× · α)×(β× · β) = (α××β×) · (α×β) ∀α×, β×∈ A×

B (1)

Recently Concurrent Kleene algebra (CKA) was proposed in [3].2 CKA is defined
as two quantales(S, +, ; , 0, 1) and(S, +, ∗, 0, 1) related by an exchange axiom.3 Quan-
tales are idempotent semirings which are also complete lattices under the natural order
≤ of the semiring (i.e. have the extra constraint of a top element). The natural order is
defined asα ≤ β

△

= α + β = β. Similarly,SKA forms also two idempotent semirings;
and bothSKA and CKA have×and∗ commutative. What differentiates the two is the
synchrony axiom on the one hand and the exchange axiom on the other, and as we see
later, also the choice of models.

Both algebras can model Hoare-style reasoning about sequential programs. On top,
both algebras can reason about some form of concurrent programs: CKA can model
Jone’s rely/guarantee calculus, whereasSKA can reason in the style of Qwicki and
Gries (i.e., shared-variables concurrency and interference) about synchronous programs.

CKA theory relies heavily on the natural order≤; the exchange axiom is defined in
terms of it. Generally, an intuitive understanding of the natural order of a semiring is
that≤ states that the left operand has less behavior than the rightoperand, or in other
words, the right operand specifies behavior which includes all the behavior specified
by the left operand (and possibly more). The exchange axiom entails two properties of
CKA relevant for our discussion:

(α ∗ β); (α′ ∗ β′) ≤ (α; α′) ∗ (β; β′) (2)

α; β ≤ α ∗ β (3)

Equation (2) is similar to the synchrony axiom. It is more general because it considersα

andβ general actions and not only synchronous actions likeα×, β×∈ A×

B (i.e. the basic
actions closed only under×). On the other hand it is less informative than the synchrony
axiom because it only states inclusion of behaviors and not equality. One may read (2)
as: “All behaviors coming from putting two concurrent compositions in sequence are
captured by putting the respective sequences in concurrentcomposition.”

Equation (3) does not hold inSKA and has no similar counterpart either. InSKA
sequence composition and synchronous composition of two complex actions have dif-
ferent behaviors. Equation (3) states that the concurrent composition captures all the

2 See the related technical reports athttp://www.informatik.uni-augsburg.de/
de/forschung/reports/

3
; and∗ correspond to respectively· and× in SKA.

Synchronous Kleene Algebra vs. Concurrent Kleene Algebra 3

behavior of the sequential composition. This is the same as in the “concurrency as in-
terleaving” approach where all the behaviors coming from all the possible interleavings
are contained in the concurrent composition. In CKA one has this because of the com-
mutativity of∗ (α; β + β; α ≤ α ∗ β).

The closest relation to interleaving thatSKA can make is with theshuffleoperator
from regular languages which has a position between the interleaving approach and the
partial orders approach to concurrency. If we were to ignorethe branching information
in our actions then we can view×as anordered shuffle. The shuffling of two sequences
of actions inSKA walks step by step (on the· operation) and shuffles the basic actions
found (locally).

Now we take a look at the models of the two algebraic formalisms and also relate
them with the partial orders model.

For CKA the models are given as elements ofP(P(E)) whereE is a set of events
equipped with a dependency relation→ (no transitivity or acyclicity requirements as
with partial orders). A model is a set of traces, where a traceis just a set of events. For
SKA thestandard interpretationof the actions is given by defining a homomorphism
ÎSKA which takes any action ofSKA into a correspondingregular set of synchronous
strings(i.e. a subset of strings fromP(AB)∗).

Synchronous strings, as related to the traces of CKA, also have a dependency re-
lation which is a restricted partial order. We now isolate a subclass of pomsets which
define exactly this partial order. Later we come back to CKA and our discussion.

The theory of pomsets [7] is among the first in concurrency theory to make a dis-
tinction between eventsE and actionsA. A pomset is a partially ordered set of events
labeled non-injective by actions. Pomsets extend the idea of strings, which are linearly
ordered multisets, to partially ordered multisets. Formally, a pomsetis the isomorphism
class (w.r.t. the events) of the structure(E, A, <, µ) whereµ : E → A labels events by
action names. Two events that are incomparable by the partial order< are permitted to
occur concurrently. A pomset describes only one execution of the concurrent system.4

Pomsets are more expressive then our synchronous strings.

Theorem 1. Synchronous strings are completely characterized by synchronous pom-
sets. A synchronous pomset is a pomset where the partial order respects the constraint:

all maximal independent setsare disjoint,uniquely labeled, andcompletely ordered,

where anindependent set of eventsis X ⊆ E s.t. ∀ei, ej ∈ X then (ei 6< ej) ∧
(ej 6< ei). An independent set isuniquely labelediff the labeling function is injective
on X ; i.e. µ|X is injective. Two independent setsXi, Xj are completely orderediff if
∃ei ∈ Xi, ∃ej ∈ Xj with ei < ej then∀ei ∈ Xi, ∀ej ∈ Xj is the case thatei < ej .

We can find operations on synchronous pomsets correspondingto theSKA’s +, ·,
and∗. For the×of SKA we did not find a straightforward equivalent for synchronous
pomsets. Moreover, we are not sure if there is apomset definableoperation (as in ter-
minology of [2]). The first candidate was the concurrency operation ||, but this breaks
thecompletely orderedrequirement.

4 The same as a trace in CKA and a synchronous string inSKA.

4 Cristian Prisacariu

The pomset concurrency operation|| behaves like the∗ of CKA, meaning that||
combines two pomsets with disjoint events by making the union of the events and the
union of the partial orders (no new dependencies are added).Similarly, in CKA one can
view two traces as having their own dependency relation (as→ restricted to each trace)
and∗ makes union of their events with no restriction on the dependency relations.

In CKA the dependency relation is not manipulated, it is given. CKA processes
specify subsets of events, and each subset has attached the predefined→ restricted to
its events only. InSKA and pomsets the partial order is changed with each application
of an operator; e.g., sequential composition adds dependencies. The approach of CKA
is similar to that of separation logic where one reasons about a big (given) program
by separating it into smaller independent programs. On the other hand the partial or-
ders model has a constructivist view where big programs are constructed from smaller
programs (i.e. the partial order is constructed).

The sequential composition of two traces in CKA returns the union of the events
only if there is no dependency from the events of the left operand to events of the right
operand. In the constructivist view of pomsets andSKA two pomsets are composed
sequentially by adding a dependence between any event of theright operand and all the
events of the left operand. This implies the same constraintas CKA imposes. InSKA
we achieve the separation of the dependencies by construction, whereas in CKA it is
achieved by choosing the separation depending on the predefined→ relation.

Concluding, we remind that the purpose of our discussions was to get a better un-
derstanding of the underlying intuitions behind CKA in relation to the ideas behind
SKA and pomsets. As a last remark, it would have been interestingto also cast CKA
into pomsets because we would thus have a common formal ground for comparison.
But this is not immediate because the dependency relation ofthe CKA model does not
have the constraints of a partial order (i.e. is more general).

References

1. J. H. Conway.Regular Algebra and Finite Machines. Chapman and Hall, 1971.
2. J. L. Gischer.Partial Orders and the Axiomatic Theory of Shuffle. PhD thesis, CS, Stanford

University, 1984.
3. T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene Algebra. In20th Interna-

tional Conference on Concurrency Theory (CONCUR’09), LNCS. Springer, 2009.
4. D. Kozen. A completeness theorem for kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994.
5. D. Kozen. Kleene Algebra with Tests.ACM TOPLAS’97, 19(3):427–443, 1997.
6. R. Milner. Calculi for synchrony and asynchrony.TCS, 25:267–310, 1983.
7. V. R. Pratt. Modeling Concurrency with Partial Orders.International Journal of Parallel

Programming, 15(1):33–71, 1986.
8. C. Prisacariu. Extending Kleene Algebra with Synchrony.Technical Report 376, Univ. Oslo,

October 2008.
9. C. Prisacariu. Extending Kleene Algebra with Synchrony:Completeness and Decidability. In

T. Uustalu and J. Vain, editors,20th Nordic Workshop on Programming Theory, 2008.

