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Abstract. We study unification and matching in equational theories
based on semirings, which include Kleene algebra and extensions with
different forms of concurrency, constraint semirings, and synchronous ac-
tions algebra. Generally the unification problems are undecidable in this
setting, but different undecidability proofs are required. On the other
hand, the matching problems are decidable and a general pattern can be
drawn. This pattern is developed into a matching algorithm, relying on a
new way of combining non-disjoint theories, which we call stratification,
and on a relaxation of the finite variant property, which we call separa-
bility. Consequently, we believe that our algorithm and the notions that
we introduce have an importance i) beyond theories based on semirings;
ii) for other problems related to unification and matching.

1 Introduction

Semirings, but mostly idempotent semirings (IS) are the basis of several recent
equational theories of higher complexity (i.e., with more defining equations or
extra operators). The theories that we consider in this paper are synchronous
actions algebras (SAA) [16] and constraints semirings (CS ) and combinations
[3,15]. Not considered here, but in the scope of our work are Kleene algebra [7]
and concurrent extensions of Kleene algebra [16,9].

The synchronous actions of SAA are the basis of the contract logic from [17].
Constraint semirings have been proposed in [3] to model various notions of con-
straints and have been used in [15] to define a process algebra with constraints.
Semirings alone have been used in [14] for a general algebraic framework for
shortest-distance problems.

For all these formalisms unification and matching problems occur naturally.
Even if matching is a restricted version of unification, sometimes it is more
relevant in practice. For example, matching in Kleene algebras or SAA can be
used in formal synthesis of systems: on the one side of the equality we have the
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(1) x + (y + z) = (x + y) + z

(2) x + y = y + x

(3) x + 0 = 0 + x = x

(4) x + x = x

(5) x · (y · z) = (x · y) · z
(6) x · 1 = 1 · x = x

(7) x · 0 = 0 · x = 0

(8) x · (y + z) = x · y + x · z

(9) (x + y) · z = x · z + y · z

(10) x×(y×z) = (x×y)×z

(11) x×y = y×x

(12) x×1 = 1×x = x

(13) x×0 = 0×x = 0

(14) a×a = a ∀a ∈ AB

(15) x×(y + z) = x×y + x×z

(16) (x + y)×z = x×z + y×z

(17) (t× · x)×(t′× · y) = (t××t′×) · (x×y),
∀t×, t′×∈ A

×

B

(18) x + 1 = 1

(19) x · y = y · x

Table 1. Axioms of idempotent semirings IS (1)-(9), synchronous actions algebras
SAA (1)-(17), and constraint semirings CS (1)-(9),(18),(19).

specification of the required behaviour of the system and on the other side we
have the behaviour of (a part) of our system, where the unknown behaviour is
represented by variables. Discovering the unkown parts of the system amounts
then to solving the corresponding matching problem. The matching problem for
SAA was left open in [16] and a particular matching problem is used in giving
semantics to the contract logic CL in [17]. Hence, the decidability of the CL logic
was proven relative to the decidability of this particular matching problem. The
matching algorithm that we propose here for SAA solves the decidability of CL.

2 Decomposition algorithm for separable theories

In this section we show that there are algorithms for matching in semiring based
theories (even if unification is undecidable for such theories) and that these
algorithms can be cast in a general setting. More precisely, we propose a non-
disjoint combination scheme: these theories are stratified in such a way that their
layers, even though non-disjoint, can be separated when one is interested in a
solution for a matching problem.

Definition 1 (examples of theories considered). An idempotent semiring
is the algebraic structure IS = (A, +, ·,0,1) that respects axioms (1)-(9) of Table
1. A synchronous actions algebra [16] SAA = (A, +, ·,×,0,1) is generated from
a set of constants AB and is axiomatized by (1)-(17) of Table 1. A×

B
is the set

of ground terms constructed from AB closed under×. A constraint semiring [3]
CS = (A, +, ·,0,1) is an idempotent semiring where 1 is absorbing element for
+ and · is commutative (i.e., axioms (1)-(9),(18),(19) of Table 1).

Unification in idempotent semirings and synchronous actions algebras is un-
decidable. To prove undecidability we addapt to our theories the method of
[1] which uses reduction from the modified Post correspondence problem. (We
cojecture that unification in constraint semirings is also undecidable and the
proof can make use of Minski machines in the style of the undecidability result
for ACUIHC from [1].) Nevertheless, matching is decidable for these theories
and the main ideas behind our combination scheme and general decomposition
algorithm for matching are the following.
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Definition 2 (stratification). We say that an equational theory E is strat-
ified w.r.t. f , where f ∈ F is a functional symbol from E (or simply call E
f -stratified), iff E is the union of

– an upper layer: E⊤ ⊆ E – which contains all and only the equations of E that
contain only f , variables, and constants;

– a bottom layer: E⊥ ⊆ E – which contains all and only the equations of E in
which f does not occur;

– an interface layer: E⊢ ⊆ E – which consists of all the other equations; i.e.,
E⊢ = E \(E⊤∪E⊥) – and where the interface layer has to respect the following
stratification restriction:
E⊢ can be directed into a convergent rewrite system R⊢ s.t. for any term u its
interface canonical form u (defined as u = u↓R⊢

) is of the form C[u1, . . . , uk],
where C ∈ T ({f},X ) and u1, . . . , uk ∈ T (F \ {f},X ).

Example 1. Suppose that E⊢ contains only equations where f distributes over
all other function symbols g, e.g. of the form f(g(x1, x2)) = g(f(x1), f(x2)).
Consider the system R⊢ obtained by orienting all the equations from E⊢ as
l → r with top(r) = f , i.e. R⊢ moves the symbols f to the top. It is easy to see
that R⊢ is terminating and the canonical form gathers all the f symbols at the
top. Hence, the stratification restriction is respected.

Example 2. The theories IS and SAA are particular cases of the previous ex-
ample. They are stratified with respect to +, where IS⊢ is made of equations
(8), (9) and SAA⊢ is made of (8), (9), (15), (16). Moreover, SAA⊥ is stratified as
well, with respect to ·, where SAA⊥⊢ is made of the equation (17).

We will prove that matching modulo a stratified theory E can be reduced to
matching modulo its upper layer E⊤ and matching modulo its bottom layer E⊥.
To be able to separate E⊤ from E⊥, we need their interaction to be handled only
by the interface layer E⊢, and in a particular way described in the following.

Definition 3 (separability). We say that an f -stratified theory E is f -separa-
ble iff for any term u and ground term t, there is a finite set of substitutions
θ1, . . . , θn such that:

∃σ : uσ =E t ⇔ ∃i, σ′ : (uθi)σ
′ =E⊤∪E⊥

t

Intuitively, separability states that we can guess in advance all the reductions
in the interface layer: they are determined by the set of substitutions θ1, . . . , θn.

Example 3. IS and SAA are separable. The set of substitutions θ1, . . . , θn is given
by the possible ways to assign 0 to variables and then by bounds given depending
on a measure of t w.r.t. the + operator, which we call width. For example, for
the matching problem x + y = a + b + c · d × d′, two of the substitutions would
be θ1 = {x 7→ 0, y 7→ y1 + y2 + y3} and θ2 = {y 7→ y1 + y2}.

Furthermore, SAA⊥ is also separable. For example, one of the SAA⊥-matching
problems obtained above, y3 = c · d × d′, would further be reduced by the sub-
stitution θ3 = {y3 7→ z1 · z2}.



4 S. Bursuc and C. Prisacariu

Decomposition algorithm for matching. Let u =E t be a matching prob-
lem modulo an f -stratified and f -separable theory E . We may assume, without
loss of generality, that u and t are in interface canonical form.

Step 1. By separability, we know that u =E t is solvable iff there is a computable
term v in interface canonical form s.t. v =E⊤∪E⊥

t is solvable. Separability
ensures that there are finitely many v’s (i.e., v = uθi for some i), hence we
can just choose such a v.

Step 2. Because v, t are in interface canonical form, they have the form v =
C[v1, . . . , vn] and t = C′[t1, . . . , tm], with C, C′ ∈ T ({f},X ) and v1, . . . , vn,
t1, . . . , tm ∈ T (F \ {f},X ). Since E⊥ and E⊤ share only constants, we can
prove that v =E⊤∪E⊥

t is solvable iff there is a function F that assigns to
v1, . . . , vn either a term in {t1, . . . , tm} or a constant such that

– C[F (v1), . . . , F (vn)] =E⊤
C′[t1, . . . , tm]; (*)

– v1 =E⊥
F (v1) ∧ . . . ∧ vn =E⊥

F (vn); (**)

Step 3. Guess a function F (there are only finitely many trials to make) and
check that it satisfies the ground E⊤-word problem (*).

Step 4. If (*) is satisfied, solve the E⊥-matching problem (**).

3 Related work and conclusion

Stratification and the corresponding decompositon algorithm relate to the works
on the combination of disjoint theories, e.g. [2]. Indeed, after a first step that
eliminates the interface layer, our algorithm separates the (almost) disjoint com-
bination of the bottom layer and the upper layer. In the context of formal verifi-
cation of security protocols, [5] proposes a way to hierarchize a theory. However,
their notion of hierarchy assumes that the two theories cannot be swapped in
the same equation. This is not the case in semiring-based theories, because of
distribitivity axioms.

Separability is related to the finite variant property of [6]. It has already
been shown in [8] how the finite variant property is useful for solving unification
problems. However, as we have seen, unification is undecidable for our theories
and also the finite variant property does not hold: [6] shows that this is the
case for any theory that has homomorphism-like properties. Separability can
therefore be seen as a first relaxation of the finite variant property, suitable in
the context of matching and possibly other applications.

An approach to unification in the light of notions simmilar to stratification
and separability is followed by [12]. The structure that is ensured by stratification
here is ensured by a sort theory there. However, even if a sort theory could be
assigned to semiring-based theories, what we call here the bottom layer would not
be separable in the sense of [12]. Indeed, they require for none of the separated
symbols to appear in the rest of the equations. This is not the case for · from
the bottom layer, which also appears in the interface layer.

In a broader setting, stratification and separability relate to hierarchical and
local reasoning in logical theories [13,10,11]. For instance, separability can be
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seen as a locality notion with respect to the ground right hand side, where the
local set is determined by the bounded set of substitutions.

In the long version of this work, we will show that our general approach
can be applied to any semiring based theory. In future, we will try to tighten
the links with the above-mentioned related works. We will also investigate how
stratification and separability relate to other theories and to restricted unification
problems, possibly decidable and relevant in practice, e.g. where we bound the
number of variables, the number of constants, or both.
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