An Algebraic Structure for Concurrent Actions*

Cristian Prisacariu

Department of Informatics — University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

cristi@ifi.uio.no

Abstract

In [2] we have provided a formal language for specifying contracts, which allows
to write (conditional) obligations, permissions and prohibitions of the different
contract signatories, based on the so-called ought-to-do approach. In such an ap-
proach the above normative notions are specified over (names of human) actions,
as for example “The client is obliged to pay after each delivery”. There, we have
given a formal semantics of the contract language in a variant of p-calculus, but
we have left the formalization of the underlying action algebra underspecified.
In this paper we introduce a new algebraic structure to provide a well-founded
formal basis for the action-based contract language presented in [2]. Though the
algebraic structure we define is somehow similar to Kleene algebra with tests
[1], there are substantial differences due mainly to our application domain. A
first difference is that we do not include the Kleene star as it is not needed
in our context. A second difference is that we introduce an operator in the
algebra to model true concurrency. The main contributions of the paper are:
(1) A formalization of concurrent actions; (2) The introduction of a different
kind of action negation; (3) A restricted notion of resource-awareness; and (4)
A standard interpretation of the algebra over specially defined rooted trees.
The algebra of concurrent actions and tests (CAT) that we present in this
abstract is formed of an algebraic structure CA = (A, +, -, &, 0,1) which defines
the concurrent actions, and a Boolean algebra which defines the tests. Special
care is taken when combining actions and tests under the different operators.
The algebraic structure CA is defined by a carrier set of elements (which
we call compound actions, or just actions) denoted A and by the signature
Y ={&,-,+,0,1, Ag} which gives the action operators and the basic actions.
The non-constant functions of X' are: 4+ for choice of two actions, - for
sequence of actions (or concatenation), and & for concurrent composition of
two actions. The constant function symbols of the finite set Ag C A are called
basic (atomic) actions. The special elements 1 and 0 are also constant function
symbols. The set of basic actions is called the generator set of the algebra. In
Table 1 we collect the axioms that define the structure C.A.
We want to have a resource-aware algebra similarly to what has been done
for linear logic. Therefore we do not allow the idempotence property for the &
operator (a&a # a). As an example, if o represents the action of paying 100$

* Partially supported by the Nordunet3 project “Contract-Oriented Software Devel-
opment for Internet Services“.

at(B+7)=(a+pB)+y a&e(B&y) = (a&ef)&y

at+pf=0+a

B _ a&f = p&a
a+0=04+a=q«a 0kl = 1&a = a
at+oa=«

a-(B-v)=(a-8)v
a-l=1-a=«
a-0=0-aa=0
a-(B+7)=a-B+a-y
(a+pf)-y=a-v+8-7

a&(B+7) = a&f + aky

(a+ B)&y = a&y + B&y

a&(a' - B) = a()&a'(1) ... - a(n)&a'(n) - B
where length(a) = length(a') =n

(10)
(11)
(12)
(13) «&0=0&a =0
(14)
(15)
(16)

NN AN N N N S S
O 00 ~J O O i W N =
— N N S e N N

Table 1. Axioms of CA

then paying 200$ would be represented as a&av. Note that we can represent only

discrete quantities with this approach. We consider a conflict relation over the

set of basic actions Ap (denote by #¢) defined as: a #¢ b & a&b = 0. The

intuition of the conflict relation is that if two actions are in conflict then the
actions cannot be executed concurrently.

The structure CAT = (CA, B) combines the previous defined algebraic struc-
ture CA with a Boolean algebra B in a special way. A Boolean algebra is a
structure B = (A3, V, A, -, L, T) where the function symbols (V, A, and =) and
the constants (L and T) have the usual meaning. Moreover, the elements of set
A; are called tests and are included in the set of actions of the C.A algebra (i.e.
tests are special actions; A; C A). We denote tests by letters from the end of
the Greek alphabet ¢, ¢, ... followed by 7.

We give the standard interpretation of the actions of A by defining a ho-
momorphism I¢47 which takes an action of the CA7 algebra and returns a
special guarded rooted tree preserving the structure of the action given by the
constructors. A guarded rooted tree has labels (representing basic actions) on
edges and tests as the types of the nodes. We define special operators on these
trees: U join, ~ concatenation, and | concurrent join. In order to have the
same behavior of 1 and 0 from C A7 under the interpretation as trees we give a
special procedure for pruning the trees.

For actions « defined with the operators +, -, &, and tests we have a canon-
ical form denoted a! and defined as: ! = +,cr p- @'l, where R contains
either basic actions, concurrent actions, or tests, and o’ is a compound ac-
tion in canonical form. The action negation is denoted by @ and is defined as:
a=+perp - =+,cgb + +perp- o, where p and o are as before. The set
R is defined to contain: {(=¢)?|¢ € R} U{a|a € Ag, and V3 € R, £¢ a}
where Ag contains concurrent actions generated only by means of &, and <g is
a strict partial order which basically compares two actions to see which contains
the other with respect to the & operator. Note that because & is not idempotent
the set R becomes infinite (thus having infinite branching in the associated tree).
We overcome this problem by defining action schemas and tree schemas.

In conclusion we mention some works which are close related to our work.
J.J.Meyer ’88 investigates algebraic properies of the actions he has in its Dynamic
Deontic Logic. D.Kozen’s extensive work on Kleene algebras forms a basis for our
algebra. Our work goes well with Pratt’s work on pomsets for true concurrency.

A nice introduction to rooted trees can be found in the work of M.Hennessy on
algebraic theory of processes.

Acknowledgements
All the results of the paper have been obtained jointly with Gerardo Schneider.

References

1. D. Kozen. Kleene algebra with tests. TOPLAS’97, 19(3):427-443, 1997.

2. C. Prisacariu and G. Schneider. A formal language for electronic contracts. In
M. Bonsangue and E. B. Johnsen, editors, FMOODS’07, volume 4468 of LNCS,
pages 174-189. Springer, 2007.

